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Abstract – In this paper, previously reported work is

extended for fusing binary valued features. In general,

when mining discrete data to train supervised discrete

Bayesian classifiers, it is often of interest to determine

the best threshold setting for maximizing performance.

In this work, we utilize a discrete Bayesian classifi-

cation model, a gain function, to determine the best

threshold setting for a given number of binary valued

training data under each class. Results are demon-

strated for simulated data by plotting the expected gain

versus threshold settings for different numbers of train-

ing data. In general, it is shown that the expected gain

reaches a maximum at a certain threshold. Further, this

maximum point varies with the overall quantization of

the data. Additional results are also shown for a dif-

ferent gain function on the decision variable, that are

used to extend previously reported results.

Keywords: Gain function, Noninformative prior, Dis-
crete binary data, Unknown data distribution.

1 Introduction
In [11], results appeared that determined the best
threshold setting for maximizing classification perfor-
mance, for the problem of mining discrete data to train
supervised discrete Bayesian classifiers. In this paper, it
is of interest to extend this work by reporting on results
when fusing binary valued features, and for using an ad-
ditional gain function on the decision variable. Before
elaborating on these new results, background informa-
tion is provided about the methods used here (this also
appeared in [11]).

1.1 Background on the Methods Used

A problem that has been well studied involves classi-
fication when the statistics (i.e., probabilistic models)
of each class are unknown and determined empirically
(some examples are found in [4, 3, 5, 6, 9, 13, 14, 15, 12])
from training data (i.e., supervised learning). For ex-
ample, in [12] this problem was studied by showing the

performance of a Bayesian classification test (referred
to as the Combined Bayes Test (CBT)), which com-
bines the information in discrete training and test data
to infer symbol probabilities.

As previously explained in Ref. [12], by “discrete”
it is meant that data used to represent each class can
take on one of M possible values. This discrete data
may have arisen naturally in its M -level form, or it
may have been derived by quantizing “fused” feature
vectors.1 In either case, with the situation of interest
there are certain labeled realizations of this (M -valued)
data, and this is referred to as the “training” data un-
der both classes. That is, in the two class case there
are Nclass A realizations under a given class class A
and Nclass B realizations under a given class class B.
Also, given this training data, it is assumed that Ny

unlabeled “test” data are observed, and these are to
be simultaneously tested by a classifier. Therefore, the
typical classification problem utilizing the CBT involves
determining, with minimum probability of error, from
which class the unknown test data have been generated.

The interesting aspect of the CBT is in its discrete
observation model. In particular, the CBT was devel-
oped in [12] using the multinomial distribution for all
independent discrete observations of training and test
data, and the Dirichlet distribution as a noninformative
prior (i.e., representing complete ignorance) on the M
symbol probabilities. Basically, this implies that the
prior probabilities are assumed themselves to be uni-

formly distributed over the positive unit hyperplane.

A formula for the average probability of error, P (e),
was also developed in [12] for the CBT, and it is typ-
ically used to illustrate its performance. In particular,
based on this formula and given a fixed number of train-
ing and test data, P (e) was shown to reach a minimum

1For example, three binary valued features can take on M =
8 discrete symbols: (0, 0, 0), (0, 0, 1), . . ., (1, 1, 1), and by the
same convention four binary valued features can take on M = 16
discrete symbols. The point is in the data model used here the
overall quantization complexity, M , can be considered to be a
collection of fused features with the equivalent joint cardinality.
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at a particular number of discrete symbols called M∗.
Thus, the quantity M∗ in the CBT is useful in that it
represents the number of discrete symbols, or the joint
quantization fineness of feature vectors, associated with
best classification performance. 2

1.2 New problem investigated

For the problem investigated here consider that there
are N total training data, with each composed of a typ-
ical vector of fused features and an associated scalar s
independent of the classification events. Also, it will
be assumed that taken as aggregate s is uniformly dis-
tributed between 0 and 1. In this problem we intend
to pick a threshold τ , (0 < τ < 1), such that class A
is composed of all data having s ≤ τ and class B has
s > τ . It is straightforward to see that the number of
training data under class A is Nclass A = τ ∗ N , and
under class B it is Nclass B = (1 − τ) ∗ N (or at least
the nearest integers thereto).

In modeling this problem a “gain” function, g(s), is
also assigned, and it is assumed that the classes and
fused feature data will be represented by a trained CBT.
Notice, and given g(s), the expected gain obtained from
“investing” in a test datum that is adjudged to be in
class B (i.e., by the CBT) can be determined. There-
fore, the problem that we address in this paper is in
estimating the best threshold, τ , which yields the high-
est overall expected gain. This will be determined as a
function of the number of data, and of the quantization
complexity M representing the fused features. Further,
the effect of different gain functions will also be inves-
tigated, and in this paper a new rational gain function
is shown that was not investigated in [11].

2 Mathematical model for the
new problem investigated

As stated above, the goal is to estimate the threshold
τ that yields the highest overall expected gain when a
test datum is adjudged to be in class B. To do this,
the expected gain is defined as

J(τ) = (τ)pfa(Nclass A, Nclass B)E(g(s)|s ≤ τ)

+(1 − τ)pd(Nclass A, Nclass B)E(g(s)|s > τ) (1)

where

2Much of the results shown in Ref. [12] was an extension of
work given by Hughes, which is known in the literature as Hughes

phenomenon (for example, see [3]).In extending Hughes’ result,
performance of the CBT was compared to an uncombined maxi-
mum likelihood (ML) based test. In particular, it was shown that
larger numbers of test data cause M∗ to increase for the CBT
with an overall reduction in its average probability of error. How-
ever, for the uncombined test larger numbers of test data caused
M∗ to either remain unchanged or decrease, and its overall aver-
age probability of error increased. With these results, it was also
shown that with a slight modification the CBT can be used to test
the statistical similarity of two discrete data sets (i.e., whether
they were produced by the same multinomial distribution).

τ and (1 − τ) represent prior probabilities;
pfa(Nclass A, Nclass B) is the probability of deciding
class B in a CBT of training data of sizes Nclass A

& Nclass B , when in fact the test sample is truly from
class A;
pd(Nclass A, Nclass B) is the probability of deciding
class B in a CBT of training data sizes Nclass A &
Nclass B , when in fact the test sample is truly from
class B;
From Formula (5) in Appendix A
note that pfa(Nclass A, Nclass A) =
P (Hclass A) P (zclass A ≤ τzclass B | Hclass A),
and pd(Nclass A, Nclass B) = 1 −
P (Hclass B) P (zclass A > τzclass B | Hclass B);
The expected value of the gain function for s ≤ τ is
given by E(g(s)|s ≤ τ) =

∫ τ

0
1
τ
g(s)ds, and for s > τ it

is computed as E(g(s)|s > τ) =
∫ 1

τ
1

1−τ
g(s)ds.

In this work, to obtain results two gain functions,
g(s), will be utilized in Formula (1). In particular,
two functions are utilized having the respective forms,
g(s) = sc and g(s) = cs

cs+1 .3 Note, Figure (1) illus-
trates plots of the three gain functions appearing in
the results below, and for comparing performance each
function purposely increases with a different rate as τ is
increased (i.e., into the region more favoring class B).

As can be seen in Formula (1) above, two integrals
(i.e., for both s ≤ τ and s > τ ) must be evaluated for
each respective gain function. Table I below shows the
analytical results of these integrals.

Table 1: Analytical expressions of the expected value
of various gain functions for s ≤ τ , E(g(s)|s ≤
τ) =

∫ τ

0
1
τ
g(s)ds, and for s > τ , E(g(s)|s > τ) =

∫ 1

τ
1

1−τ
g(s)ds.

g(s) E(g(s)|s ≤ τ) E(g(s)|s > τ)

sc τc

c+1
1

1−τ
( 1

c+1 − τc+1

c+1 )
cs

cs+1 τ − ln(1+cτ)
c

1 − ln(1+c)
c

− τ + ln(1+cτ)
c

3 Results
Figure (2) illustrates a plot of the average expected gain
J(τ) of Formula (1), and using the quadratic gain func-
tion g(s)s2 (see Figure (1), and c = 2 in Table 1), ver-
sus the decision threshold setting τ . In this case, four
curves are shown for various quantization complexities
M of respectively (top to bottom in the figure) 2, 4,
32, and 124 discrete symbols. This corresponds to, re-
spectively, 1, 4, 5, and 7 binary valued fused features.
Also, each class contains 100 samples of training data.
Recall, the objective was to determine the effect that

3The variable c in both formulas is a constant.
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Figure 1: Illustrating a plot of the gain functions used
in generating results for this paper. Shown is g(s) = sc,
for c = 1 and c = 2, and g(s) = cs

cs+1 , for c = 1. Note,
in each case for plotting s = τ .

the threshold τ has on the expected gain function of
Formula (1), which can then be used to predict or es-
timate τ yielding best performance (i.e., when a test
datum is adjudged to be in class B). Clearly, the ex-
pected gain reaches a maximum value in each curve (for
M = 2, maximum J(τ)is at maximum τ), and which
is dependent on both τ and M . Specifically, it can be
seen in Figure (2) that as M is increased from 2 discrete
symbols to 124, the threshold for highest expected gain
reduces from 1 to 0.75. Further, the overall absolute
value of the expected gain reduces as well.

In general, notice that for the general gain function,
g(s) = sc, used here the average expected gain tends to
increase with τ (i.e., higher gains are associated with
larger threshold settings). With that, in the CBT, and
for a fixed number of training data, as M is increased
more uncertainty occurs in the model due to an increase
in the curse of dimensionality. Thus, intuitively it is
not surprising that the best overall expected gain is
associated with a higher decision threshold. Further,
because the curse of dimensionality predominates with
larger values of M (i.e., more uncertainty in CBT cell
probability estimates), it is also not surprising that the
overall absolute gain decreases with M .

As a supplemental note for the results shown, all fig-
ures of this paper were obtained using Monte Carlo
Simulations. Specifically, the results are based on an
average of generating 50 sets of true symbol probabili-
ties for each class (uniformly distributed), and for each
of these, 100 independent trials of generating training
data. Additionally, because Monte Carlo simulations
were used as opposed to the complete analytical solu-
tion required in Formula (1), the results in each figure
tend to have a jagged appearance.
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Figure 2: Illustrating a plot of the average expected
gain J(τ) of Formula (1), and using the quadratic gain
function g(s) = s2 (see Figure (1), and c = 2 in Table
1), versus the decision threshold setting τ . In this case,
four curves are shown for various quantization complex-
ities M of respectively 2, 8, 32, and 124 discrete sym-
bols.

In Figure (3), the situation of Figure (2) is repeated
using instead the linear gain function g(s) = s (see
Figure (1), and c = 1 in Table 1). In this case, it
can be seen that overall results are very similar to that
shown in Figure (1). However, by comparing Figures
(2) and (3) it can now be seen that the absolute values
for the gains are larger using a linear gain function. For
example, when τ is near zero in Figure (2) J(τ) = 0.33,
and in Figure (3) J(τ) = 0.33. This implies that when
operating at a best threshold setting τ , and for a given
M , a linear gain function will yield the best overall
average expected gain. Notice, and although not shown
here, if the gain function is also scaled by a constant
(e.g., in the linear case g(s) = c ∗ s), then for all c > 1
the expected gain curves increase beyond that shown
in Figure (3).

In Figure (4), the situation of Figure (2) is repeated,
and using the quadratic gain function g(s) = s2, but
with ten samples of training data for each class. In this
situation, the results have the same overall trend as
in Figure (2), however, less training data has made the
curves much more jagged. Further, note that the overall
average gains are less, and the thresholds associated
with peak gain are also less (i.e, maximum gains are
shifted to the left). Further, performance results for
higher values of M are more similar (e.g., compare M =
32 to M = 124). All of these trends, of course, are due
to an increase in the uncertainty in the CBT model that
results when very little training data is used to estimate
the cell probabilities for each class.

In Figure (5), the situation of Figure (3) is repeated,

213



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Nclass A = Nclass B = 100
g(s) = s

M = 2

M = 8

M = 32

M = 124

τ

J(τ)

Figure 3: The situation of Figure (2) is repeated using
instead the linear gain function g(s) = s (see Figure
(1), and c = 1 in Table 1).

and using the linear gain function g(s) = s, and again
with ten samples of training data for each class. In this
situation, the results have the same overall trend as in
comparing Figure (4) to Figure (2) for the quadratic
case above.

In Figure (6), the rational gain function g(s) = s
s+1

(see Figure (1), and c = 1 in Table 1) is used to obtain
results, and with 100 samples of training data for each
class. In this case, the rational gain function is uti-
lized to help illustrate the importance of gain function
shape on overall results. Notice in Figure (1) that both
the quadratic and linear gain functions increase with
increasing threshold, τ , and at a steeper rate than does
the rational gain function. The impact of this on perfor-
mance can be seen in Figure (6), where the overall ex-
pected gain decreases to a minimum point with τ before
it finally increases again. With that, another interest-
ing trend is that for larger values of τ maximum overall
gains are now associated with larger M values (as com-
pared to the opposite trend for either the quadratic or
linear gain functions). Recall, in this case we are de-
termining the expected gain obtained from “investing”
in a test datum that is adjudged to be in class B (i.e.,
by the CBT), and that rational gain function tapers off
with increasing τ . This results in a decreasing expected
overall gain until τ is relatively high (i.e., class B has
s > τ), and the likelihood of data under class B is also
very high.

In Figure (7), the situation of Figure (6) is repeated,
and using the rational gain function g(s) = s

s+1 , and
with ten samples of training data for each class. In
this situation, the results have the same overall trend
as in Figure (6). However, it is also apparent that the
minimum expected gain now occurs for smaller values
of τ , and performance for larger values of M are more
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Figure 4: The situation of Figure (2) is repeated, and
using the quadratic gain function g(s) = s2, but with
10 samples of training data for each class.

similar. As in Figures (2) through (5) this is due to the
small number of training data used for estimating cell
probabilities.

4 Summary
In this paper, results were demonstrated in training
supervised discrete Bayesian classifiers, where it was
of interest to determine the best threshold setting for
maximizing expected gain in deciding on the class of
an unknown test data. In this case, the CBT, and var-
ious gain functions, were utilized to determine the best
threshold setting for a given number of training data
under each class. Results were demonstrated for simu-
lated data by plotting the expected gain versus thresh-
old setting for different overall quantization levels, and
for different numbers of discrete training data. In gen-
eral, it was shown that the expected gain reaches a
maximum at certain thresholds, which depended on the
overall quantization of the data. Additionally, results
were also shown for different gain functions on the de-
cision variable. In this case, it turned out that a linear
gain function produced better results than a quadratic
function. Further, when using a rational gain function
the expected gain actually reached a minimum point
before reaching a maximum. The interesting result in
this is that it the rate of increase in the gain function,
with increasing decision threshold, has a large impact
on the overall expected gain in correctly classifying test
data.

A The Combined Bayes Test
(CBT) and Its Implementa-
tion

The CBT is repeated here as it appeared in [12].
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Figure 5: The situation of Figure (3) is repeated, and
using the linear gain function g(s) = s, but with 10
samples of training data for each class.

A.1 Combined Information Classifica-
tion

A.1.1 Combined Multinomial Model

With this model, it is assumed that there exists a
pair of probability vectors, pk and pl, the ith elements
of which denote the probability of a symbol of type i be-
ing observed under the respective classes k and l. The
fundamental model for this testing method is thus for-
mulated based on the number of occurrences of each dis-
crete symbol being an i.i.d. multinomially distributed
random variable. Therefore, the joint distribution for
the frequency of occurrence of all training and test data
with the test data, y, a member of class k is given by
(boldface indicates a vector quantity)

f (xk,xl,y|pk,pl,Hk) = Nk!Nl!Ny!

M
∏

i=1

p
xk,i+yi

k,i p
xl,i

l,i

xk,i!xl,i!yi!

(2)
where 4

k, l ∈ {class A, class B}, and k �= l;
Hk is the hypothesis defined as py = pk;
M is the number of discrete symbols;
xk,i is the number of occurrences of the ith symbol in
the training data for class k;

Nk

{

Nk =
∑M

i=1 xk,i

}

is the total number of training

data for class k;
yi is the number of occurrences of the ith symbol in the
test data;

Ny

{

Ny =
∑M

i=1 yi

}

is the total number of test data;

pk,i

{

∑M

i=1 pk,i = 1
}

is the probability of the ith symbol

for class k.
4In the following notation k and l are exchangeable.
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Figure 6: The situations of Figures (2) and (3) are re-
peated using the rational gain function g(s) = s

s+1 (see
Figure (1), and c = 1 in Table 1), and with 100 samples
of training data for each class.

A.1.2 Combined Bayes Test (CBT)

Rather than assuming that pk and pl are simply un-
known parameters to be estimated (and the resulting
test a CGLRT5), our approach here is to give them
prior distributions. Nothing a priori is known about the
probability vectors, and hence the appropriate prior is
one of complete ignorance: the uniform Dirichlet, which
is given by

f (pk) = (M − 1)!I{
∑

M

i=1
pk,i=1

} (3)

where I{x} is the indicator function.

The CBT, which can be referred to as a Bayes factor
(see [7]), appears as

f (xk,xl,y|Hk)

f (xk,xl,y|Hl)
=

(Nk + M − 1)! (Nl + Ny + M − 1)!

(Nk + Ny + M − 1)! (Nl + M − 1)!

×

M
∏

i=1

(xk,i + yi)! (xl,i)!

(xk,i)! (xl,i + yi)!

Hk

>
<
Hl

τ (4)

where the decision threshold τ is equal to
P (Hl) /P (Hk) for minimizing the probability of
error.

5The combined GLRT, or CGLRT ([12]; also see, [13]), rep-
resents the correctly-posed generalized likelihood ratio procedure
which relies on ML probability estimates culled from both train-
ing and test data. Notice that although the CGLRT is appealing
from a practical perspective, from a theoretical standpoint it is
less interesting due to its lack of optimality in non-asymptotic
situations. With this, our preference for a Bayesian approach to
this problem has been substantiated by other more recent results.
Specifically, the probabilistic structure of the CBT was used in
[10] with simulated and real data to reduce the number of sym-
bols (M) for improved classification performance in a way far
superior to that of GLRT based methods.
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Figure 7: The situation of Figure (6) is repeated, and
using the rational gain function g(s) = s

s+1 , but with
10 samples of training data for each class.

Note, the CBT can be determined (after correct sub-
stitution of model parameters, and a slight reworking of
the result) from the Multinomial-Dirichlet distribution
shown in [1]. In fact, the data reduction method, known
as the Bayesian Data Reduction Algorithm (BDRA),
developed in [10] is actually based on a conditional CBT
equivalent to the Multinomial-Dirichlet.

A.1.3 Probability of Error

Letting zk = f (xk,xl,y|Hk) (see formula (12) above),
the average probability of error for the CBT is defined
as

P (e) = P (Hk) P (zk ≤ τzl | Hk)

+P (Hl) P (zk > τzl | Hl). (5)

It is necessary to only show the first term of (5) as
the second term is similar except for conditioning on Hl.
Thus, ignoring P (Hk), the first term of (5) is given by

P (zk ≤ τzl | Hk) =
∑

y

∑

xk

∑

xl

I{zk≤τzl}f (xk,xl,y|Hk) (6)

where f (xk,xl,y|Hk) was defined in formula (2) above.
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